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The cubic Schrodinger equation, which governs the complex amplitude of a cross-wave 
that is subharmonically excited by a symmetric wavemaker in a deep wave tank 
(Jones 1984), is solved for prescribed boundary conditions at the wavemaker and a 
null condition at infinity. This solution (which is a limiting case of a one-parameter 
family of cnoidal waves) typically describes a trapped wave that decays exponentially 
in a semi-infinite tank, although it may be fitted to a tank of finite length for a 
particular combination of parameters. It is closely related to the solution for trapped 
waves excited through vertical oscillation of a long channel (Wu, Keolian t Rudnick 
1984). 

1. Introduction 

driven by a wavemaker with the prescribed motion 
Jones (1984) considers the generation of cross-waves in a deep wave tank that is 

x = af(z) s in2d  ( z  < 0). (1) 

He posits the velocity potential for a cross-wave with n transverse nodes in the form 
(I have restored dimensions except as noted) 

ga $ = - [C(X ,  7 )  cosut+ D(X, 7 )  sin ut] cos 
U 

where C and D are dimensionless, slowly varying amplitudes, 

U2 
X = ekx, 7 = e2ut, e = ka, k = - (3a, b ,  c,  4 

n = I ,  2, . . . and b is the breadth of the tank. He then finds that C and D satisfy a 
pair of evolution equations, his (38), that may be combined to obtain the cubic 
Schrodinger equation 

!l’ 

where F = C+iD, 
0 

J = h + 0.404A2, A = 4k J-, f(z) e4kz dz, (5a7 b ) t  

t I have corrected a sign error in the last term in Jones’s (35a), which leads to a change of the 
sign of A in his (36a), (37) and (39). Jones (private communication) agrees with these changes. 
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and un = (nng/b)i is the resonant (or cutoff) frequency of the cross-wave. His 
boundary conditions (34c) may be combined to obtain 

-iLF* ( X = O ) ,  
aF _ -  ax 

where F* is the complex conjugate of F, and 

0 

[4kj(z) +f'(z) e2kz] dz-2f(0). 
= 

(7) 

F also must satisfy appropriate conditions a t  some downstream station. 
On examining the corresponding problem for a tank of finite depth d, for which 

exp (kz) is replaced by cosh [k(z+d)] /cosh kd in (2) and the dispersion relation (3d) 
is replaced by k tanh kd = a 2 / g ,  I find that (cf. Miles 1984) the terms a2F/8X2 and 
I FI2 F in (4) must be multiplied by functions of K = n d / b  that differ from 1 by 
exponentially small terms as K .T m and are within 5 % of 1 for K > 2.5. Similar changes 
must be made in the parameters A and L. 

Representative values of the parameters A and L are provided by Barnard & 
Pritchard's (1972) experimentqt for which b = 30.6cm, n = 2/3 (2 or 3), 
d = 16.4/16.1 cm, 2u = 28.30/34.86 rad/s, and 

(9) 
z 

f(z) = 1 +- ( -d  < 2 < 0). d 

The corresponding value of kd, as given by (3d) with g = 981 cm/s2, is 3.34/4.99, for 
which the deep-water approximation is amply justified. The substitution of (9) into 
( 5 b )  and (8), followed by the neglect of O[exp ( -  2kd)], yields 

A = 1 - (4kd)-', L = (2kd)-' (2kd- 1)2,  (IOU, b )  

which reduce to 0.93/0.95 and 4.83/8.08 respectively for kd = 3.34/4.99. The 
corresponding value of nn/kb is 1.006/0.994, which implies that the excitation is just 
below/above the cutoff frequency; however, the difference u--B, is of the same order 
as (the neglected) capillary and viscous effects (and perhaps also the uncertainties 
in the dimensions). 

2. Trapped solutions 
Jones considers numerical solutions of (4), (7)  and the condition aF/aX = 0 at 

X = 1 for J = 0, but appears to have overlooked the existence of trapped solutions 
that may be derived from the known solitary-wave solution of (4) for J > 0 and are 
at least qualitatively consistent with observations of cross-waves in appropriate 
parametric domains. The boundary condition (7) sharply constrains the general 
solitary-wave solution of (4) (Whitham 1974), but it does admit solutions of the form 

(11)  F ( X )  = ( 1  f i )  C ( X )  

t Barnard & Pritchard describe their tank as 'long' (their figure 3 implies that its length 
exceeds 4b), but then state that its length is 2.7 cm; this should be 2.7 m (Pritchard, private 
communication). 
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(i.e. D = fC). Substituting (11) into (4) and invoking (7) and C(c0) = 0, I find that 
the only non-trivial solutions are given by 

r 

L 
(J > +La), (12a,b) or C = 2J4 sech [(2J)+ (X-X,)], X, = ( 2 4 4  tanh-l 

where the alternative signs in (12b) are vertically aligned with those in (1 1) and place 
the maximum of C at X = X, 8 0 if L > 0. The parameter ;La typically exceeds 
0.404Aa (e.g. +La = 11.7132.6 and 0.404Aa = 0.35/0.36 for the n = 2/3 mode in 
Barnard & Pritchard’s tank), in consequence of which the trapping condition J > +La 
typically requires A > 0, i.e. u < u,,, which is the trapping condition in the absence 
of the wavemaker. (The approximations (lOa, b) imply ;La < 0.404Aa for kd < 0.53, 
but the deep-water approximation presumably fails for such small kd .) 

Barnard & Pritchard (1972) obtain waves that appear to fall off exponentially from 
their wavemaker and, in at least one of the two cases for which they plot amplitude 
v,s. distance (their figure 6), have profiles that are qualitatively similar to (12a), but 
these waves did not attain stationary states, for which reason quantitative comparisons 
with the present theory are not possible. 

Wu, Keolian & Rudnick (1984) induce trapped waves at the form (2) with envelopes 
of the form (12) through vertical oscillation, at frequency 2a, of a long channel. These 
parametrically excited waves are governed by a modified form of the cubic Schrodinger 
equation subject to null conditions at X = f 00, and the agreement between theory 
(Miles 1984) and observation is reasonably close. 

It is worth emphasizing that the solution described by (11) and (12) with the 
upper/lower choice of sign for L >< 0 satisfies the boundary condition W / a X  = 0 a t  
X = X,. It follows that there is a single length (as opposed to an infinite, discrete 
set of lengths) for which the solution describes a standing wave in a tank of length 
aX,/Ea. 

Barnard, Mahony & Pritchard (1977) consider the direct excitation of a cross-wave 
by an antisymmetric wavemaker oscillating near the cutoff frequency and obtain a 
steady-state equation that is similar to (4) if alp/& = 0 but with different coefficients 
and a boundary condition that differs significantly from (7). They give a solution 
(footnote following their (3.10), in which it appears that the 4 in the exponential 
should be a 2) that can be reduced to a hyperbolic secant and is a counterpart of (12). 

3. Cnoidal waves 
The trapped wave (12) is a limiting case of a one-parameter family of cnoidal waves 

for which the squared modulus m of the elliptic cosine may take values in (0, t )  if J < 0 
and in (+, 1)  if J > 0. The downstream boundary condition form < 1 may be imposed 
at some finite value of X and determines an infinite, discrete sequence of resonance 
conditions (which are amplitude-dependent). The limit m .T 1 with J > 0 yields the 
solution (12). The limit m J- 0 with J < 0 yields a sinusoidal wave. The joint limit J+O 
and rn+t requires special attention, but does yield a cnoidal wave. 

This work was supported in part by the Physical Oceanography Division, National 
Science Foundation, NSF Grant OCE81-17539, and by the Office of Naval Research 
under Contract N00014-84-K-0137, NR 062-318 (430). 
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